Special Issues | 特集号
Special feature on recent developments in causal inference and machine learning, Vol.2 (2024) co-edited with Shuichi Kawano
Masayoshi Takayanagi, Mutsumi Yoshino, Genta Kikuchi, Tomoko Kanke, and Noriyuki Suzuki. Autonomous adaptive control of manufacturing parameters based on local regression modeling. Behaviormetrika, 51: 499–513, 2024.
[pdf] [Google scholar]
Konstantin Genin and Conor Mayo-Wilson. Success concepts for causal discovery. Behaviormetrika, 51: 515–538, 2024.
[pdf] [Google scholar]
Jun Otsuka and Hayato Saigo. Process theory of causality: a category-theoretic perspective. Behaviormetrika, 51: 21–36, 2024.
[pdf] [Google scholar]
Special feature on recent developments in causal inference and machine learning, Vol.1 (2022) co-edited with Shuichi Kawano
Michael U. Gutmann, Steven Kleinegesse, and Benjamin Rhodes. Statistical applications of contrastive learning. Behaviormetrika, 49: 277–301, 2022.
[pdf] [Google scholar]
Wolfgang Wiedermann. Third moment-based causal inference. Behaviormetrika, 49: 303–328, 2022.
[pdf] [Google scholar]
Takashi Nicholas Maeda. I-RCD: an improved algorithm of repetitive causal discovery from data with latent confounders. Behaviormetrika, 49: 329–341, 2022.
[pdf] [Google scholar]
Jalal Etesami, Kun Zhang, and Negar Kiyavash. A Wasserstein-based measure of conditional dependence. Behaviormetrika, 49: 343–362, 2022.
[pdf] [Google scholar]
Special feature on recent developments in causal discovery and inference (2017)
Krzysztof Chalupka, Frederick Eberhardt, and Pietro Perona. Causal feature learning: an overview. Behaviormetrika, 44(1): 137–164, 2017.
[pdf] [Google scholar]
Sisi Ma and Alexander Statnikov. Methods for computational causal discovery in biomedicine. Behaviormetrika, 44(1), 165-191, 2017.
[pdf] [Google scholar]
Teague Henry and Kathleen Gates. Causal search procedures for fMRI: review and suggestions. Behaviormetrika, 44(1), 193--225, 2017.
[pdf] [Google scholar]
Special issue on causal discovery (2014) co-edited with Jun-ichiro Hirayama
Ilya Shpitser, Robin Evans, Thomas S. Richardson, and James M. Robins. Introduction to nested Markov models. Behaviormetrika, 41(1): 3--39, 2014.
[pdf] [Google scholar]
Robert E. Tillman and Frederick Eberhardt. Learning causal structure from multiple datasets with similar variable sets. Behaviormetrika, 41(1): 41--64, 2014.
[pdf] [Google scholar]
Shohei Shimizu. LiNGAM: Non-Gaussian methods for estimating causal structures. Behaviormetrika, 41(1): 65--98, 2014.
[pdf] [Google scholar]