Software
Software and code package
B. Andrews, E. Kummerfeld. Better Simulations for Validating Causal Discovery with the DAG-Adaptation of the Onion Method. arXiv preprint arXiv:2405.13100, 2024.
[pdf] [Google scholar]J. D. Ramsey, B. Andrews. Py-Tetrad and RPy-Tetrad: A New Python Interface with R Support for Tetrad Causal Search. Arxiv preprint arXiv:2307.13757, 2023.
[pdf] [Google scholar]S. J. Unni, P. Sheth, K. Ding, H. Liu, K. S. Candan. UPREVE: An End-to-End Causal Discovery Benchmarking System. Arxiv preprint arXiv:2307.13757, 2023.
[pdf] [Google scholar]SCREEN Advanced System Solutions. Causalas. https://www.screen.co.jp/as/solution/causalas
D. Arpit, M. Fernandez, C. Liu, W. Yao, W. Yang, P. Josel, S. Heinecke, E. Hu, H. Wang, S. Hoi, C. Xiong, K. Zhang, J. C. Niebles. Salesforce CausalAI Library: A Fast and Scalable Framework for Causal Analysis of Time Series and Tabular Data. Arxiv preprint arXiv:2301.10859, 2023.
[pdf] [Google scholar]T. Ikeuchi, M. Ide, Y. Zeng, T. N. Maeda, and S. Shimizu. Python package for causal discovery based on LiNGAM. Journal of Machine Learning Research, 24(14):1−8, 2023.
[pdf] [github] [Google scholar]
[LiNGAM Python package: Tutorial slides]
[LiNGAM Pythonパッケージでできること: 紹介スライド]NTT Communications Corporation. Node-AI. https://sdpf.ntt.com/services/nodeai/
NEC. Causal analysis. https://jpn.nec.com/solution/causalanalysis/index.html
Neutral Co., Ltd. NTech Predict. https://ntech.inc/predict/
Y. Zheng, B. Huang, W. Chen, J. Ramsey, M. Gong, R. Cai, S. Shimizu, P. Spirtes, K. Zhang. Causal-learn: Causal discovery in Python. Journal of Machine Learning Research, 25(60):1−8, 2024.
[A Python package for performing causal discovery methods including conditonal-independence-based methods and LiNGAM methods.]
[pdf] [github] [Google scholar]K. Zhang, S. Zhu, M. Kalander, I. Ng, J. Ye, Z. Chen, L. Pan. gCastle: A Python Toolbox for Causal Discovery. Arxiv preprint arXiv:2111.15155, 2021.
[pdf] [Google scholar]D. Kalainathan, O. Goudet, R. Dutta. Causal Discovery Toolbox: Uncovering causal relationships in Python. Journal of Machine Learning Research, 21(37): 1:5, 2020.
[pdf] [code] [Google scholar]M. Kalisch, M Mächler, Diego Colombo, Marloes H. Maathuis, Peter Bühlmann. Causal Inference Using Graphical Models with the R Package pcalg. Journal of Statistical Software, 47(11): 1-26, 2012.
[pdf] [code] [Google scholar]